NASA/SOFIA/Hankins et al.; JPL-Caltech/S.Stolovy; ESA ESA/Herschel/PACS, SPIRE/Hi-GAL Project

The SOFIA/FORCAST Galactic Center Legacy Survey

Matt Hankins, Caltech SOFIA Tele-talk May 6, 2020

Why Study the Galactic Center (GC)?

- Unique star formation environment within our own Galaxy:
 - high gas density
 - large turbulent motions
 - high temperatures
 - Strong and complex magnetic fields
 - deep gravitational potential well

2

Testing Theories of GC Star Formation

- Rich in dense molecular gas: ~10⁷ M_{sun}
- Global GC Star formation rate:
 ~0.1 M_{sun} yr⁻¹
 - What suppresses star formation in the region?

The SOFIA/FORCAST Galactic Center Survey: Mapping the most active portions of the GC at 25 and 37 µm

Project Team: Matt Hankins (PI, Caltech), Ryan Lau (JAXA), Angela Cotera (SETI), Mark Morris (UCLA), James Radomski (SOFIA/USRA), Betsy Mills (Univ. Kansas), Daniel Walker (ALMA/NAOJ), Ashley Barnes (Univ. Bonn), Janet Simpson (SETI), Terry Heter (Cornell Univ.), Steven Longmore (LJMU), John Bally (UC Boulder), Mansi Kasliwal (Caltech), Nadeen Sabha (Univ. Innsbruck), Macarena Garcia-Marin (ESA)

The SOFIA/FORCAST Galactic Center Survey: Mapping the most active portions of the GC at 25 and 37 µm

- Total of 42 fields: 35 observed in cycle 7 with 7 additional fields from earlier cycles
 - Covers 403 arcmin2 (2180 pc2) including Sgr A, Sgr B, and Sgr C
 - Angular resolution: 2.3" (~0.07 pc) at 25 μm & 3.4" (~0.1 pc) at 37 μm
 - Nominal point source sensitivity: ~250 mJy at 25 μm & ~400 mJy at 37 μm

The Galactic Center at IR Wavelengths

Warm Dust Emission in the Mid-IR

7

Warm Dust Emission in the Mid-IR

8

FORCAST

Faint Object infRared CAmera for the Sofia Telescope

Dual-Channel Camera • Short Wave: 5-25 μm

• Long Wave: 25-37 μm

Camera Properties

- FOV: 3.2' x 3.2'
- Plate Scale: 0.768"x0.768"

Star Formation in the GC: A Tale of Two Clouds

SOFIA/FORCAST 25 & 37 μm with Herschel/PACS 70 μm

Star Formation in the GC: A Tale of Two Clouds

SOFIA/FORCAST 25 & 37 μm with Herschel/PACS 70 μm

Star Formation in the GC: A Tale of Two Clouds

SOFIA/FORCAST 25 & 37 μ m with Herschel/PACS 70 μ m

The Sgr C Complex

Active Star Formation in the GC

SOFIA/FORCAST 25 & 37 μm with Herschel/PACS 70 μm

A Plethora of Features in Sgr B

Zooming in on Sgr B2

Recent Star Formation in the GC

SOFIA/FORCAST 25 & 37 μm with Herschel/PACS 70 μm

The Arched Filaments HII Region

The Arched Filaments HII Region

The Sickle HII region

20

The Sickle HII region

Zooming into the Sickle HII region

Zooming into the Sickle HII region

Curious Isolated Mid-IR Sources

SOFIA/FORCAST 25 & 37 μm with Herschel/PACS 70 μm

Curious Isolated Mid-IR Sources

Combination HST Paschen- α , SOFIA/FORCAST 25 (g) and 37 μ m images

Sgr A Region

SOFIA/FORCAST 25 & 37 μm with Herschel/PACS 70 μm

Sgr A: Comparison with Prior Observations

30

31

The G359.866+0.002 Complex

SOFIA/FORCAST 25 µm

SOFIA/FORCAST 37 µm

HST Paschen-α

Legacy Program Data Products

- Survey mosaics at 25 μm and 37 μm
 - Initial versions available on SOFIA DCS & IPAC/IRSA
 - Stay tuned for revised versions with improved PSF uniformity
- 25/37 color-temperature and 37 μm optical depth maps
 - Preliminary versions on next slides
- Compact Source Catalog
 - Preliminary version created, undergoing refinements
- Combined SOFA/FORCAST 25 μm and Spitzer/MIPS 24 μm map
 - Work in progress

Preliminary Dust Temperature Maps

Preliminary Optical Depth Map

35

What Comes Next?: A Preliminary Look at Sgr A

- Examine dust temperatures to examine potential heating sources
- Dashed Contours are dust temperatures estimated from the central cluster
- The SE blobs appear to have a source of local heating
- The NW wing has no local 'hot spots'

Summary

- SOFIA/FORCAST GC Legacy Program observed in cycle 7
 - Survey mosaics at 25 μm and 37 μm are available on SOFIA DCS & IPAC/IRSA
- Survey Overview paper describing data <u>published in ApJ</u> & available on <u>Arxiv</u>
 - Feature several known regions of interest with more work to be done
 - Stay tuned for updates & additional data products

Thanks for listening! Questions?

Special thanks to SOFIA Mission Operations and all those that made the FORCAST program possible

Collaborators: Ryan Lau (JAXA), Angela Cotera (SETI), Mark Morris (UCLA), James Radomski (SOFIA/USRA), Betsy Mills (Univ. Kansas), Daniel Walker (ALMA/NAOJ), Ashley Barnes (Univ. Bonn), Janet Simpson (SETI), Terry Heter (Cornell Univ.), Steven Longmore (LJMU), John Bally (UC Boulder), Mansi Kasliwal (Caltech), Nadeen Sabha (Univ. Innsbruck), Macarena Garcia-Marin (ESA)